Remote Points and Extremal Disconnectedness

2011 Winterschool, Hejnice

Rodrigo Hernández-Gutiérrez

(joint work with Angel Tamariz-Mascarua)

rod@matem.unam.mx

Universidad Nacional Autónoma de México

All spaces are Tychonoff and for X, let $X^* = \beta X - X$ be the remainder.

All spaces are Tychonoff and for *X*, let $X^* = \beta X - X$ be the remainder.

In the 1950's, W. Rudin proved under CH that ω^* is not homogeneous by showing the existence of *P*-points.

All spaces are Tychonoff and for *X*, let $X^* = \beta X - X$ be the remainder.

- In the 1950's, W. Rudin proved under CH that ω^* is not homogeneous by showing the existence of *P*-points.
- J. Frolik gave the first proof in ZFC that ω^* is not homogeneous by combinatorial methods.

All spaces are Tychonoff and for X, let $X^* = \beta X - X$ be the remainder.

- In the 1950's, W. Rudin proved under CH that ω^* is not homogeneous by showing the existence of *P*-points.
- J. Frolik gave the first proof in ZFC that ω^* is not homogeneous by combinatorial methods.
- Later, K. Kunen proved in ZFC that in ω^* there are in fact weak *P*-points (more than weak P but not P).

All spaces are Tychonoff and for *X*, let $X^* = \beta X - X$ be the remainder.

- In the 1950's, W. Rudin proved under CH that ω^* is not homogeneous by showing the existence of *P*-points.
- J. Frolik gave the first proof in ZFC that ω^* is not homogeneous by combinatorial methods.
- Later, K. Kunen proved in ZFC that in ω^* there are in fact weak *P*-points (more than weak P but not P).

Further, Frolik showed the following:

All spaces are Tychonoff and for *X*, let $X^* = \beta X - X$ be the remainder.

- In the 1950's, W. Rudin proved under CH that ω^* is not homogeneous by showing the existence of *P*-points.
- J. Frolik gave the first proof in ZFC that ω^* is not homogeneous by combinatorial methods.
- Later, K. Kunen proved in ZFC that in ω^* there are in fact weak *P*-points (more than weak P but not P).

Further, Frolik showed the following:

Theorem. (Frolik) If X is not pseudocompact, then X^* is not homogeneous.

Question. (van Douwen) Can we show why X^* is not homogeneous?

Question. (van Douwen) Can we show why X^* is not homogeneous?

A point $p \in X^*$ is called remote (from X) if every time $A \subset X$ is nowhere dense (in X), then $p \notin cl_{\beta X}(A)$.

Question. (van Douwen) Can we show why X^* is not homogeneous?

A point $p \in X^*$ is called remote (from X) if every time $A \subset X$ is nowhere dense (in X), then $p \notin cl_{\beta X}(A)$.

Fine and Gillman showed that \mathbb{R} (and some other spaces) have remote points, using CH.

Question. (van Douwen) Can we show why X^* is not homogeneous?

A point $p \in X^*$ is called remote (from X) if every time $A \subset X$ is nowhere dense (in X), then $p \notin cl_{\beta X}(A)$.

Fine and Gillman showed that \mathbb{R} (and some other spaces) have remote points, using CH.

Theorem. (van Douwen) If X is a non-pseudocompact space with countable π -weight, then there is a remote point in X^* .

Theorem. (Dow) If X is pseudocompact, then there are no remote points in X^* .

Theorem. (Dow) If X is pseudocompact, then there are no remote points in X^* .

Theorem. (van Douwen and van Mill) If K is a compact space which can be covered by nowhere dense P-sets, and N is any countable space, then $K \times N$ has no remote points. (For example, $K = U(\omega_2) \times U(\omega_2)$)

Theorem. (Dow) If X is pseudocompact, then there are no remote points in X^* .

Theorem. (van Douwen and van Mill) If K is a compact space which can be covered by nowhere dense P-sets, and N is any countable space, then $K \times N$ has no remote points. (For example, $K = U(\omega_2) \times U(\omega_2)$)

Theorem. (Dow) If X is a non-pseudocompact ccc space with π -weight equal to ω_1 , then X has a remote point.

Theorem. (Dow) If X is pseudocompact, then there are no remote points in X^* .

Theorem. (van Douwen and van Mill) If K is a compact space which can be covered by nowhere dense P-sets, and N is any countable space, then $K \times N$ has no remote points. (For example, $K = U(\omega_2) \times U(\omega_2)$)

Theorem. (Dow) If X is a non-pseudocompact ccc space with π -weight equal to ω_1 , then X has a remote point.

Theorem. (Fine and Gilman, Dow) Under CH, separable spaces have remote points and it is consistent that there is a separable space with no remote points.

Using Remote Points

Applications of remote points:

Using Remote Points

Applications of remote points:

Corollary. If *X* is non-pseudocompact, nowhere locally compact and of countable π -weight, then X^* is not homogeneous.

Using Remote Points

Applications of remote points:

Corollary. If *X* is non-pseudocompact, nowhere locally compact and of countable π -weight, then X^* is not homogeneous.

Corollary. If $\{X_n : n < \omega\}$ are separable spaces, then TFAE:

- $\prod_{n < \omega} X_n$ is pseudocompact,
- $\, {}^{ } {} {}^{ } {} {}^{ } {} {}^{ } {} {}^{ } {} {}^{ } {} { } {}^{ } {} { } {}^{ } {} { } {}^{ } {} { } {}^{ }$
- $\beta(\prod_{n<\omega} X_n)$ is homeomorphic to $\prod_{n<\omega} \beta X_n$.

We say a space X is extremally disconnected at p ("ED" for short) if every time U, V are disjoint open sets, then $p \notin \overline{U} \cap \overline{V}$.

We say a space X is extremally disconnected at p ("ED" for short) if every time U, V are disjoint open sets, then $p \notin \overline{U} \cap \overline{V}$.

If X is ED at every point, then we say X is ED.

We say a space X is extremally disconnected at p ("ED" for short) if every time U, V are disjoint open sets, then $p \notin \overline{U} \cap \overline{V}$.

If X is ED at every point, then we say X is ED.

Theorem. (van Douwen) βX is ED at each remote point.

We say a space X is extremally disconnected at p ("ED" for short) if every time U, V are disjoint open sets, then $p \notin \overline{U} \cap \overline{V}$.

If X is ED at every point, then we say X is ED.

Theorem. (van Douwen) βX is ED at each remote point.

How can ED help the study of remote points?

For each space X, there exists a unique $(E(X), k_x)$ where:

For each space *X*, there exists a unique $(E(X), k_x)$ where: E(X) is an ED space,

For each space X, there exists a unique $(E(X), k_x)$ where:

- E(X) is an ED space,
- $k_X : E(X) → X$ is a continuous, perfect (closed and compact), irreducible (image of a proper closed subset is a proper subset) and surjective function.

For each space X, there exists a unique $(E(X), k_x)$ where:

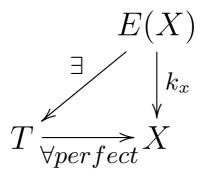
- E(X) is an ED space,
- $k_X : E(X) → X$ is a continuous, perfect (closed and compact), irreducible (image of a proper closed subset is a proper subset) and surjective function.

E(X) is called the projective cover Or absolute of X. It has a universal property:

For each space X, there exists a unique $(E(X), k_x)$ where:

- E(X) is an ED space,
- $k_X : E(X) → X$ is a continuous, perfect (closed and compact), irreducible (image of a proper closed subset is a proper subset) and surjective function.

E(X) is called the projective cover Or absolute of X. It has a universal property:



The construction of the absolute is "dual" to taking the completion of a Boolean Algebra.

The construction of the absolute is "dual" to taking the completion of a Boolean Algebra.

For a topological space X, consider the Boolean Algebra of regular open sets RO(X). Let s(RO(X)) be its Stone space.

The construction of the absolute is "dual" to taking the completion of a Boolean Algebra.

For a topological space X, consider the Boolean Algebra of regular open sets RO(X). Let s(RO(X)) be its Stone space. Then,

$$E(X) \equiv \{ \mathcal{U} \in s(RO(X)) : \mathcal{U} \text{ clusters} \},\$$

and $k_X(\mathcal{U})$ is the unique cluster point of \mathcal{U} .

The construction of the absolute is "dual" to taking the completion of a Boolean Algebra.

For a topological space X, consider the Boolean Algebra of regular open sets RO(X). Let s(RO(X)) be its Stone space. Then,

 $E(X) \equiv \{ \mathcal{U} \in s(RO(X)) : \mathcal{U} \text{ clusters} \},\$

and $k_X(\mathcal{U})$ is the unique cluster point of \mathcal{U} .

So basically, for compact spaces, the absolute is determined by the boolean algebra of regular open subsets.

An Example

Theorem. If *X* is a compact space of countable π -weight with no isolated points, then $E(X) = E(^{\omega}2)$.

An Example

Theorem. If *X* is a compact space of countable π -weight with no isolated points, then $E(X) = E(^{\omega}2)$.

Proof. Let \mathcal{B} be a countable π -base consisting of regular open sets of X. Notice that \mathcal{B} is countable and atomless (because there are no isolated points). Thus, $\mathcal{B} \approx CO(^{\omega}2)$.

An Example

Theorem. If *X* is a compact space of countable π -weight with no isolated points, then $E(X) = E(^{\omega}2)$.

Proof. Let \mathcal{B} be a countable π -base consisting of regular open sets of X. Notice that \mathcal{B} is countable and atomless (because there are no isolated points). Thus, $\mathcal{B} \approx CO(^{\omega}2)$.

Notice that RO(X) is the completion of \mathcal{B} and $RO(^{\omega}2)$ is the completion of $CO(^{\omega}2)$. Thus, RO(X) is isomorphic to $RO(^{\omega}2)$.

An Example

Theorem. If *X* is a compact space of countable π -weight with no isolated points, then $E(X) = E(^{\omega}2)$.

Proof. Let \mathcal{B} be a countable π -base consisting of regular open sets of X. Notice that \mathcal{B} is countable and atomless (because there are no isolated points). Thus, $\mathcal{B} \approx CO(^{\omega}2)$.

Notice that RO(X) is the completion of \mathcal{B} and $RO(^{\omega}2)$ is the completion of $CO(^{\omega}2)$. Thus, RO(X) is isomorphic to $RO(^{\omega}2)$.

Since X is compact, EX has **all** ultrafilters in $s(RO(^{\omega}2))$. The result follows from this.

β , E and T

Theorem. $\mathbf{P} \ \beta E(X) = E(\beta X),$

If $D \subset X$ is dense, then E(D) can be viewed as a dense subset of E(X).

Theorem. $\mathbf{P} \ \beta E(X) = E(\beta X),$

If $D \subset X$ is dense, then E(D) can be viewed as a dense subset of E(X).

Let T(X) denote the set of remote points of X (so $T(X) \subset X^*$).

Theorem. $\mathbf{P} \ \beta E(X) = E(\beta X),$

If $D \subset X$ is dense, then E(D) can be viewed as a dense subset of E(X).

Let T(X) denote the set of remote points of X (so $T(X) \subset X^*$).

Consider the function $k_{\beta X} : \beta E(X) \to \beta X$, let $T' = k_{\beta X}^{\leftarrow}[T(X)]$ and restrict $k' = k_{\beta X} \upharpoonright_{T'} : T' \to T(X)$

Theorem. $\mathbf{P} \ \beta E(X) = E(\beta X),$

If $D \subset X$ is dense, then E(D) can be viewed as a dense subset of E(X).

Let T(X) denote the set of remote points of X (so $T(X) \subset X^*$).

Consider the function $k_{\beta X} : \beta E(X) \to \beta X$, let $T' = k_{\beta X}^{\leftarrow}[T(X)]$ and restrict $k' = k_{\beta X} \upharpoonright_{T'} : T' \to T(X)$

The function $k': T' \to T(X)$ turns out to be a homeomorphism (by the properties of ED spaces and absolutes). Also, $T' \subset T(EX)$.

We can arrive to the following conclusion:

We can arrive to the following conclusion:

Theorem. (Catherine Gates) If X is a normal space, then T(E(X)) is homeomorphic to T(X) by the map $k_{\beta X}$.

We can arrive to the following conclusion:

Theorem. (Catherine Gates) If X is a normal space, then T(E(X)) is homeomorphic to T(X) by the map $k_{\beta X}$.

We will say that two spaces X and Y are coabsolute if E(X) is homeomorphic to E(Y). Thus:

We can arrive to the following conclusion:

Theorem. (Catherine Gates) If X is a normal space, then T(E(X)) is homeomorphic to T(X) by the map $k_{\beta X}$.

We will say that two spaces X and Y are coabsolute if E(X) is homeomorphic to E(Y). Thus:

Corollary. If X and Y are normal coabsolute spaces, then T(X) is homeomorphic to T(Y).

We can arrive to the following conclusion:

Theorem. (Catherine Gates) If X is a normal space, then T(E(X)) is homeomorphic to T(X) by the map $k_{\beta X}$.

We will say that two spaces X and Y are coabsolute if E(X) is homeomorphic to E(Y). Thus:

Corollary. If *X* and *Y* are normal coabsolute spaces, then T(X) is homeomorphic to T(Y).

This is not the only way to obtain spaces with the same space of remote points: for example $T(\mathbb{Q})$ and $T(\mathbb{Q} \oplus K)$ are homeomorphic whenever K is compact.

Lemma. If $f : X \to Y$ is a continuous, perfect and irreducible surjective function, then X and Y are coabsolute.

Lemma. If $f : X \to Y$ is a continuous, perfect and irreducible surjective function, then X and Y are coabsolute.

$$E(X) \xrightarrow{k_x} X \xrightarrow{f} Y$$

Lemma. If $f : X \to Y$ is a continuous, perfect and irreducible surjective function, then X and Y are coabsolute.

$$E(X) \xrightarrow{k_x} X \xrightarrow{f} Y$$

Theorem. (Woods) Let κ be an infinite cardinal and C_{κ} be a free sum of κ copies of the Cantor set ${}^{\omega}2$. If X is a locally compact, non-compact metrizable space with no isolated points and $w(X) = \kappa$, then there is a continuous, perfect and irreducible surjection $f: C_{\kappa} \to X$. Thus, $E(X) \approx E(C_{\kappa})$ and $T(X) \approx T(C_{\kappa})$.

Lemma. If $f : X \to Y$ is a continuous, perfect and irreducible surjective function, then X and Y are coabsolute.

$$E(X) \xrightarrow{k_x} X \xrightarrow{f} Y$$

Theorem. (Woods) Let κ be an infinite cardinal and C_{κ} be a free sum of κ copies of the Cantor set ${}^{\omega}2$. If X is a locally compact, non-compact metrizable space with no isolated points and $w(X) = \kappa$, then there is a continuous, perfect and irreducible surjection $f: C_{\kappa} \to X$. Thus, $E(X) \approx E(C_{\kappa})$ and $T(X) \approx T(C_{\kappa})$.

By the way, it is easy to see that $T(C_{\kappa})$ is dense in C_{κ}^* .

Other metrizable spaces

With the method of Gates-Woods, I can prove the following:

Other metrizable spaces

With the method of Gates-Woods, I can prove the following:

Theorem. Let X be a metrizable space.

- $E(X) \approx E(^{\omega}\omega)$ if and only if X is completely metrizable, separable and nowhere locally compact.
- Let $\kappa > \omega$. Then $E(X) \approx E({}^{\omega}\kappa)$ if and only if X is completely metrizable and for each non-empty open set $U \subset X$, we have that $w(U) = \kappa$.

I do not know:

I do not know:

(1) whether ${}^{\omega}\kappa$ has remote points for $\kappa > \omega$,

I do not know:

(1) whether ${}^{\omega}\kappa$ has remote points for $\kappa > \omega$,

I suspect that $\pi w(T({}^{\omega}\kappa)) = w({}^{\omega}\kappa)$ if (1) is true.

I do not know:

(1) whether ${}^{\omega}\kappa$ has remote points for $\kappa > \omega$,

I suspect that $\pi w(T({}^{\omega}\kappa)) = w({}^{\omega}\kappa)$ if (1) is true.

(2) what other (metric, countable) spaces are coabsolute with \mathbb{Q} , or have homeomorphic sets of remote points?

I do not know:

(1) whether ${}^{\omega}\kappa$ has remote points for $\kappa > \omega$,

I suspect that $\pi w(T({}^{\omega}\kappa)) = w({}^{\omega}\kappa)$ if (1) is true.

- (2) what other (metric, countable) spaces are coabsolute with \mathbb{Q} , or have homeomorphic sets of remote points?
- (3) for a space *X*, can one characterize the class of spaces coabsolute with *X*? (some subclass?)

I do not know:

(1) whether ${}^{\omega}\kappa$ has remote points for $\kappa > \omega$,

I suspect that $\pi w(T({}^{\omega}\kappa)) = w({}^{\omega}\kappa)$ if (1) is true.

- (2) what other (metric, countable) spaces are coabsolute with \mathbb{Q} , or have homeomorphic sets of remote points?
- (3) for a space X, can one characterize the class of spaces coabsolute with X? (some subclass?)
- (4) besides this method, how can we show that spaces of remote points are (non) homeomorphic?

Let $C = {}^{\omega}2 - \{\overline{0}\}.$

Let $C = {}^{\omega}2 - \{\overline{0}\}.$

By the Gates-Woods results, if X is separable, locally compact, non-compact and metrizable, then T(C) can be embedded densely in X^* .

Let $C = {}^{\omega}2 - \{\overline{0}\}.$

By the Gates-Woods results, if X is separable, locally compact, non-compact and metrizable, then T(C) can be embedded densely in X^* .

Question. Can T(C) be characterized as a subset of X^* ?

Let $C = {}^{\omega}2 - \{\overline{0}\}.$

By the Gates-Woods results, if X is separable, locally compact, non-compact and metrizable, then T(C) can be embedded densely in X^* .

Question. Can T(C) be characterized as a subset of X^* ?

Not if $X = \mathbb{R}$: consistently (CH or by an iteration of forcing) there is a autohomeomorphism of \mathbb{R}^* that moves a remote point to a non-remote point.

Let $C = {}^{\omega}2 - \{\overline{0}\}.$

By the Gates-Woods results, if X is separable, locally compact, non-compact and metrizable, then T(C) can be embedded densely in X^* .

Question. Can T(C) be characterized as a subset of X^* ?

Not if $X = \mathbb{R}$: consistently (CH or by an iteration of forcing) there is a autohomeomorphism of \mathbb{R}^* that moves a remote point to a non-remote point.

Question. (Woods, 1971) Assume CH. Then $C^* \approx \omega^*$. Is it possible to characterize T(C) as a subset of ω^* ?

Let $C = {}^{\omega}2 - \{\overline{0}\}.$

By the Gates-Woods results, if X is separable, locally compact, non-compact and metrizable, then T(C) can be embedded densely in X^* .

Question. Can T(C) be characterized as a subset of X^* ?

Not if $X = \mathbb{R}$: consistently (CH or by an iteration of forcing) there is a autohomeomorphism of \mathbb{R}^* that moves a remote point to a non-remote point.

Question. (Woods, 1971) Assume CH. Then $C^* \approx \omega^*$. Is it possible to characterize T(C) as a subset of ω^* ?

This question has not been answered, to my knowledge.

Thank you