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All spaces are Tychonoff and for X, let X∗ = βX −X be the
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Motivation

All spaces are Tychonoff and for X, let X∗ = βX −X be the
remainder.

In the 1950’s, W. Rudin proved under CH that ω∗ is not
homogeneous by showing the existence of P -points.

Z. Frolik gave the first proof in ZFC that ω∗ is not
homogeneous by combinatorial methods.

Later, K. Kunen proved in ZFC that in ω∗ there are in
fact weak P -points (more than weak P but not P).

Further, Frolik showed the following:

Theorem. (Frolik) If X is not pseudocompact, then X∗ is not
homogeneous.
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Question. (van Douwen) Can we show why X∗ is not homogeneous?
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Fine and Gillman showed that R (and some other spaces)
have remote points, using CH.
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Remote Points

Question. (van Douwen) Can we show why X∗ is not homogeneous?

A point p ∈ X∗ is called remote (from X) if every time A ⊂ X
is nowhere dense (in X), then p /∈ clβX(A).

Fine and Gillman showed that R (and some other spaces)
have remote points, using CH.

Theorem. (van Douwen) If X is a non-pseudocompact space with
countable π-weight, then there is a remote point in X∗.
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Remote points: where?

Theorem. (Dow) If X is pseudocompact, then there are no remote
points in X∗.

Theorem. (van Douwen and van Mill) If K is a compact space which
can be covered by nowhere dense P -sets, and N is any countable
space, then K ×N has no remote points. (For example,
K = U(ω2)× U(ω2))
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Remote points: where?

Theorem. (Dow) If X is pseudocompact, then there are no remote
points in X∗.

Theorem. (van Douwen and van Mill) If K is a compact space which
can be covered by nowhere dense P -sets, and N is any countable
space, then K ×N has no remote points. (For example,
K = U(ω2)× U(ω2))

Theorem. (Dow) If X is a non-pseudocompact ccc space with π-weight
equal to ω1, then X has a remote point.

Theorem. (Fine and Gilman, Dow) Under CH, separable spaces have
remote points and it is consistent that there is a separable space with no
remote points.
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Using Remote Points

Applications of remote points:
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Corollary. If X is non-pseudocompact, nowhere locally compact and of
countable π-weight, then X∗ is not homogeneous.
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Using Remote Points

Applications of remote points:

Corollary. If X is non-pseudocompact, nowhere locally compact and of
countable π-weight, then X∗ is not homogeneous.

Corollary. If {Xn : n < ω} are separable spaces, then TFAE:
∏

n<ω Xn is pseudocompact,

β(
∏

n<ω Xn) =
∏

n<ω βXn,

β(
∏

n<ω Xn) is homeomorphic to
∏

n<ω βXn.
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Extremal disconnectedness

We say a space X is extremally disconnected at p ("ED" for
short) if every time U, V are disjoint open sets, then
p /∈ U ∩ V .
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Extremal disconnectedness

We say a space X is extremally disconnected at p ("ED" for
short) if every time U, V are disjoint open sets, then
p /∈ U ∩ V .

If X is ED at every point, then we say X is ED.

Theorem. (van Douwen) βX is ED at each remote point.

How can ED help the study of remote points?
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The projective cover

For each space X, there exists a unique (E(X), kx) where:

E(X) is an ED space,

kX : E(X) → X is a continuous, perfect (closed and
compact), irreducible (image of a proper closed subset
is a proper subset) and surjective function.
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The projective cover

For each space X, there exists a unique (E(X), kx) where:

E(X) is an ED space,

kX : E(X) → X is a continuous, perfect (closed and
compact), irreducible (image of a proper closed subset
is a proper subset) and surjective function.

E(X) is called the projective cover or absolute of X. It has a
universal property:

E(X)
∃

||yy
y
y
y
y
y
y

kx
��

T
∀perfect

// X
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Boolean Algebras

The construction of the absolute is “dual” to taking the
completion of a Boolean Algebra.
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The construction of the absolute is “dual” to taking the
completion of a Boolean Algebra.

For a topological space X, consider the Boolean Algebra of
regular open sets RO(X). Let s(RO(X)) be its Stone space.
Then,

E(X) ≡ {U ∈ s(RO(X)) : U clusters},

and kX(U) is the unique cluster point of U .
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Boolean Algebras

The construction of the absolute is “dual” to taking the
completion of a Boolean Algebra.

For a topological space X, consider the Boolean Algebra of
regular open sets RO(X). Let s(RO(X)) be its Stone space.
Then,

E(X) ≡ {U ∈ s(RO(X)) : U clusters},

and kX(U) is the unique cluster point of U .

So basically, for compact spaces, the absolute is determined
by the boolean algebra of regular open subsets.
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An Example

Theorem. If X is a compact space of countable π-weight with no
isolated points, then E(X) = E(ω2).
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isolated points, then E(X) = E(ω2).

Proof. Let B be a countable π-base consisting of regular open sets of
X . Notice that B is countable and atomless (because there are no
isolated points). Thus, B ≈ CO(ω2).
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An Example

Theorem. If X is a compact space of countable π-weight with no
isolated points, then E(X) = E(ω2).

Proof. Let B be a countable π-base consisting of regular open sets of
X . Notice that B is countable and atomless (because there are no
isolated points). Thus, B ≈ CO(ω2).

Notice that RO(X) is the completion of B and RO(ω2) is the
completion of CO(ω2). Thus, RO(X) is isomorphic to RO(ω2).

Since X is compact, EX has all ultrafilters in s(RO(ω2)). The result
follows from this.
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Theorem. βE(X) = E(βX),
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Theorem. βE(X) = E(βX),

if D ⊂ X is dense, then E(D) can be viewed as a dense subset of
E(X).
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if D ⊂ X is dense, then E(D) can be viewed as a dense subset of
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β, E and T

Theorem. βE(X) = E(βX),

if D ⊂ X is dense, then E(D) can be viewed as a dense subset of
E(X).

Let T (X) denote the set of remote points of X (so
T (X) ⊂ X∗).

Consider the function kβX : βE(X) → βX, let
T ′ = k←βX [T (X)] and restrict k′ = kβX ↾T ′ : T ′ → T (X)

The function k′ : T ′ → T (X) turns out to be a
homeomorphism (by the properties of ED spaces and
absolutes). Also, T ′ ⊂ T (EX).
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Coabsolutes and Normal Spaces

We can arrive to the following conclusion:
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homeomorphic to T (X) by the map kβX .
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homeomorphic to T (Y ).
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Coabsolutes and Normal Spaces

We can arrive to the following conclusion:

Theorem. (Catherine Gates) If X is a normal space, then T (E(X)) is
homeomorphic to T (X) by the map kβX .

We will say that two spaces X and Y are coabsolute if E(X)
is homeomorphic to E(Y ). Thus:

Corollary. If X and Y are normal coabsolute spaces, then T (X) is
homeomorphic to T (Y ).

This is not the only way to obtain spaces with the same
space of remote points: for example T (Q) and T (Q⊕K)
are homeomorphic whenever K is compact.
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Remote Points and Extremal Disconnectedness – p. 12
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Lemma. If f : X → Y is a continuous, perfect and irreducible
surjective function, then X and Y are coabsolute.

E(X)
kx

// X
f

// Y
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Proving spaces are coabsolute

Lemma. If f : X → Y is a continuous, perfect and irreducible
surjective function, then X and Y are coabsolute.

E(X)
kx

// X
f

// Y

Theorem. (Woods) Let κ be an infinite cardinal and Cκ be a free sum of
κ copies of the Cantor set ω2. If X is a locally compact, non-compact
metrizable space with no isolated points and w(X) = κ, then there is a
continuous, perfect and irreducible surjection f : Cκ → X . Thus,
E(X) ≈ E(Cκ) and T (X) ≈ T (Cκ).
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Proving spaces are coabsolute

Lemma. If f : X → Y is a continuous, perfect and irreducible
surjective function, then X and Y are coabsolute.

E(X)
kx

// X
f

// Y

Theorem. (Woods) Let κ be an infinite cardinal and Cκ be a free sum of
κ copies of the Cantor set ω2. If X is a locally compact, non-compact
metrizable space with no isolated points and w(X) = κ, then there is a
continuous, perfect and irreducible surjection f : Cκ → X . Thus,
E(X) ≈ E(Cκ) and T (X) ≈ T (Cκ).

By the way, it is easy to see that T (Cκ) is dense in C∗κ.
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Other metrizable spaces

With the method of Gates-Woods, I can prove the following:
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Other metrizable spaces

With the method of Gates-Woods, I can prove the following:

Theorem. Let X be a metrizable space.

E(X) ≈ E(ωω) if and only if X is completely metrizable,
separable and nowhere locally compact.

Let κ > ω. Then E(X) ≈ E(ωκ) if and only if X is completely
metrizable and for each non-empty open set U ⊂ X , we have that
w(U) = κ.
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I do not know:
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(1) whether ωκ has remote points for κ > ω,

I suspect that πw(T (ωκ)) = w(ωκ) if (1) is true.

(2) what other (metric, countable) spaces are coabsolute
with Q, or have homeomorphic sets of remote points?
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Other spaces

I do not know:

(1) whether ωκ has remote points for κ > ω,

I suspect that πw(T (ωκ)) = w(ωκ) if (1) is true.

(2) what other (metric, countable) spaces are coabsolute
with Q, or have homeomorphic sets of remote points?

(3) for a space X, can one characterize the class of spaces
coabsolute with X? (some subclass?)

(4) besides this method, how can we show that spaces of
remote points are (non) homeomorphic?
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Let C = ω2− {0}.
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By the Gates-Woods results, if X is separable, locally
compact, non-compact and metrizable, then T (C) can be
embedded densely in X∗.

Question. Can T (C) be characterized as a subset of X∗?

Not if X = R: consistently (CH or by an iteration of forcing)
there is a autohomeomorphism of R∗ that moves a remote
point to a non-remote point.
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A question by Woods

Let C = ω2− {0}.

By the Gates-Woods results, if X is separable, locally
compact, non-compact and metrizable, then T (C) can be
embedded densely in X∗.

Question. Can T (C) be characterized as a subset of X∗?

Not if X = R: consistently (CH or by an iteration of forcing)
there is a autohomeomorphism of R∗ that moves a remote
point to a non-remote point.

Question. (Woods, 1971) Assume CH. Then C∗ ≈ ω∗. Is it possible to
characterize T (C) as a subset of ω∗?
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A question by Woods

Let C = ω2− {0}.

By the Gates-Woods results, if X is separable, locally
compact, non-compact and metrizable, then T (C) can be
embedded densely in X∗.

Question. Can T (C) be characterized as a subset of X∗?

Not if X = R: consistently (CH or by an iteration of forcing)
there is a autohomeomorphism of R∗ that moves a remote
point to a non-remote point.

Question. (Woods, 1971) Assume CH. Then C∗ ≈ ω∗. Is it possible to
characterize T (C) as a subset of ω∗?

This question has not been answered, to my knowledge.

Remote Points and Extremal Disconnectedness – p. 15



Thank you
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